Assignment 9.

This homework is due *Thursday*, November 5.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems (if there are any) are due December 11.

1. Quick reminder

(B) Lebesgue integral of bounded function. For a bounded function on a set E of finite measure, Lebesgue integral $\int_E f$ is defined as the common value of $\sup\{\int_E \varphi \mid \varphi \leq f, \varphi \text{ simple}\}$ and $\inf\{\int_E \psi \mid \psi \geq f, \psi \text{ simple}\}$, if the latter two are equal (which is guaranteed if f is measurable).

The Bounded Convergence Theorem. Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure E; let $\{f_n\}$ be uniformly bounded on E. If $\{f_n\} \to f$ pointwise on E, then $\lim_{n\to\infty} \int_E f_n = \int_E f$. (P) **Lebesgue integral of nonnegative function.** Further, for an arbitrary

(P) Lebesgue integral of nonnegative function. Further, for an arbitrary nonnegative measurable function $f: E \to \mathbb{R} \cup +\infty$, define its Lebesgue integral by $\int_E f = \sup \left\{ \int_E h \mid h \text{ bounded, measurable, of finite support and } 0 \le h \le f \text{ on } E \right\}$

Both integrals defined above in (B) and (P) are linear, monotone and domain additive. Moreover, the following key convergence theorems hold.

Fatou's Lemma. Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E. If $\{f_n\} \to f$ pointwise a.e. on E, then $\int_E f \leq \liminf \int_E f_n$. Monotone Convergence Theorem. Let $\{f_n\}$ be an increasing sequence of non-

Monotone Convergence Theorem. Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E. If $\{f_n\} \to f$ pointwise a.e. on E, then $\int_E f = \lim \int_E f_n$.

2. Exercises

(1) (4.2.10+) The following claim was used in class in the proof of domain additivity of integral:

Lef f be a measurable function on a set E, and let A be a measurable subset of E. Then $\int_A f = \int_E \chi_A f$. Prove it

- (a) for the definition (B) (assuming f is bounded and E is of finite measure),
- (b) for the definition (P).
- (2) (4.2.13) Show that the Bounded convergence theorem fails if we drop
 - (a) the assumption that the sequence $\{f_n\}$ is uniformly bounded,
 - (b) the assumption $m(E) < \infty$.
- (3) Let f be a semisimple function, i.e. a function of the form $f = \sum_{n=1}^{\infty} \lambda_n \chi_{E_n}$ for some measurable sets E_n and real numbers λ_n . Assume additionally that f is bounded and of finite support. Prove that $\int_{\mathbb{R}} f = \sum_{n=1}^{\infty} \lambda_n m(E_n)$. (*Hint:* Use the Bounded convergence theorem.)

– see next page —

- (4) (4.3.19) For a number $\alpha \in \mathbb{R}$, define $f(x) = x^{\alpha}$ for $0 < x \leq 1$ and f(0) = 0. Compute $\int_{[0,1]} f$. (*Hint:* In the bounded case, use connection to the Riemann integral. For the unbounded case, consider h in (P) is given by $h_M = \min\{M, x^{\alpha}\}$. Argue that h_M gives the largest possible value of $\int_{[0,1]} h$ for all $h \leq M$.)
- (5) (4.3.18) If f is a bounded nonnegative function on a set of finite measure, both definition (B) and (P) apply to f. Show that they agree of f.
- $(6) (\sim 4.3.21)$
 - (a) Let the function f be nonnegative and integrable over E and $\varepsilon > 0$. Show there is a simple function η on E that has finite support, $0 \le \eta \le f$ on E and $\int_E |f - \eta| < \varepsilon$.
 - (b) Further, if E is a bounded interval, show that there is a *step* function h on E s.t. $\int_{E} |f h| < \varepsilon$. (Reminder: a step function is a function of the form $\sum_{k=1}^{n} \lambda_k \chi_{I_k}$, where I_k are intervals.)
- (7) (4.3.22+) Let $\{f_n\}$ be a sequence of nonnegative measurable functions on \mathbb{R} that converges pointwise on \mathbb{R} to f and f be integrable over \mathbb{R} . Applying the Fatou's Lemma to integrals over E and $\mathbb{R} \setminus E$, show that
- if $\int_{\mathbb{R}} f = \lim_{n \to \infty} \int_{\mathbb{R}} f_n$, then $\int_E f = \lim_{n \to \infty} \int_E f_n$ for any measurable set E.
- (8) (4.3.23) Let $\{a_n\}$ be a sequence of nonnegative real numbers. Define the function f on $E = [1, \infty)$ by setting $f(x) = a_n$ if $n \le x < n+1$. Show that $\int_E f = \sum_{n=1}^{\infty} a_n$ using the Monotone convergence theorem.
- (9) (4.3.26) Show that the Monotone convergence theorem may not hold for decreasing sequences of functions.

 $\mathbf{2}$